
Copyright: Wyższa Szkoła Logistyki, Poznań, Polska                                                                 

Citation: Ferdianti S. A., Widyadana I. G. A., 2023. Vehicle routing problem simultaneous deliveries and pickups 

with split loads and time windows with genetic algorithm (case study in shipping company). LogForum 19 (4), 

577-593, http://doi.org/10.17270/J.LOG.2023.904 

Received: 01.09.2023, Accepted: 02.10.2023, on-line: 10.12.2023 

 

   LogForum 
     > Scientific Journal  of  Logistics < 

    http://www.logforum.net           p-ISSN 1895-2038  

2023, 19 (4), 577-593 

http://doi.org/10.17270/J.LOG.2023.904 

        e-ISSN 1734-459X                      
  

ORIGINAL PAPER 

USING A GENETIC ALGORITHM TO SOLVE A VEHICLE ROUTING 

PROBLEM INVOLVING SIMULTANEOUS DELIVERIES AND 

PICKUPS WITH SPLIT LOADS AND TIME WINDOWS (A CASE STUDY 

FOR A SHIPPING COMPANY) 

Shea Amanda Ferdianti, I Gede Agus Widyadana 

Department of Industrial Engineering, Faculty of Industrial Technology Petra Christian University, East Java, Indonesia 

ABSTRACT. Background: This research addresses a Vehicle Routing Problem with Simultaneous Delivery and 

Pickup, Split Loads, and Time Windows (VRPSDPSLTW). In this research, the VRPSDPSLTW problem is adapted for 

Company X, a shipping company based in Surabaya. The main goal is to enhance the optimal utilization of vessel capacity 

in the field of shipping transportation and logistics. Little previous research has been done on VRPSDPSLTW at a shipping 

company. 

Methods: The optimization approach employed was the Genetic Algorithm (GA), which serves as a metaheuristic to 

effectively optimize vessel capacity utilization. The algorithm uses One Point Crossover and Swap Mutation operators and 

analyzes various mutation parameters to determine the best configuration. The GA was coded in R, and experiments were 

conducted to obtain the best parameter for the GA. 

Results: The research yielded several outcomes, including route plans, loaded and unloaded Twenty-Foot Equivalent Units 

(TEUs), travel times, and trip utility from the point of loading (POL) to the point of delivery (POD). In total, there were 85 

port visits, surpassing the initial count of 35 ports. Some ports were visited multiple times, with the exception of Surabaya, 

which served as the home base for a fleet of 15 vessels. The average trip duration was approximately 35 days. Through 

experimentation, it was determined that employing 1,000 generations along with a mutation probability of 0.2 produces 

improved solutions. The Genetic Algorithm solution enhanced the average vessel capacity utilization, increasing it to 

80.93%. This represents a significant 21.23% increase compared to the global average of 59.7% observed for similar vessel 

usage scenarios. 

Conclusions: Furthermore, through the introduction of novel route opportunities, the contributions of each vessel were 

effectively enhanced. This achievement resulted in an optimal average vessel capacity utilization that met the demand. The 

findings strongly advocate for the employment of the Genetic Algorithm, highlighting its potential to substantially improve 

vessel capacity utilization. Consequently, this approach has played a pivotal role in elevating the efficiency of transportation 

and logistics operations for Company X. 

 

Keywords: vehicle routing problem, simultaneous deliveries and pickups, split loads, time windows, optimization, genetic 
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INTRODUCTION 

The Vehicle Routing Problem (VRP) was 

first analysed by Dantzig and Ramser [1959] to 

find a solution for fuel delivery. It is now crucial 

for efficient cargo and travel services, covering 

various vehicles and customer demands, 

including sea and air transport. Optimizing 

delivery routes minimizes costs and travel time 

and maximizes vessel capacity use in shipping. 

This involves sequencing visits using multiple 

vehicles from a central depot [D.M. Utama et al. 

2020]. Depot and vehicle capacities, along with 

customer requests, influence route design [F. 

Arnold and K. Sörensen 2019]. VRP has evolved 

into variations like VRPPDTW, which has been 

explored by researchers like Sitek et al. [2021] 

and Dewi and Utama [2021]. 

This research examines Shipping Company 

X, which has operated in Surabaya (Indonesia) 
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since 1984, aiming to enhance its shipping 

services and economic impact. While offering 

various services, including port-to-port and 

international shipping, the company seeks to 

optimize cargo routes for greater vessel capacity 

utilization. Current manual processes hinder 

route efficiency, as evidenced by some vessels 

operating below 60% capacity. With a fleet of 

over 40 vessels of varying capacities, 

simultaneous pickup and delivery, travel time 

considerations, and load distribution 

complexities are all significant challenges in 

route optimization for Company X. 

The Genetic Algorithm (GA), by John 

Holland [1975], optimizes via genetic selection 

and natural processes, using crossover and 

mutation. GAs streamline function modeling, 

reduce errors, and are effective in engineering [J. 

Protopopova and S. Kulik 2020]. Applied to 

routing problems [S. Karakatič 2021], GAs 

address VRP variants, as can be seen in enhanced 

solutions by M. A. Mohammed et al. [2017], W. 

Ho et al. [2008], and P. R. de Oliveira da Costa 

[2018], for delivery efficiency and cost reduction. 

GA handles capacitated vehicle routing [H. Nazif 

and L. S. Lee 2012, R. Saxena et al. 2020] and 

fleet size [S. Liu et al. 2009], and improves 

VRPTW solutions with decomposition [C.-B. 

Cheng and K.-P. Wang 2009], which is relevant 

to VRPSDPSLTW. 

This research introduces a customized 

Genetic Algorithm (GA) to address 

VRPSDPSLTW challenges for Shipping 

Company X. It aims to optimize vessel capacity 

utilization while adhering to split-load, vessel 

capacity, and travel time constraints. Utilizing 

historical data (January 2018 to February 2023), 

with anonymized port and vessel names for 

confidentiality purposes, it focuses on classifying 

VRP, particularly VRPSDPSLTW. It 

incorporates route-specific details such as 

demand, distances, travel times, and vessel 

attributes, primarily analyzing Surabaya-based 

vessels of Company X. The study assumes 

uniform speed, exclusive vessel use, and a one-

week testing period. R is employed for GA, 

Power BI for visualization, and Minitab for 

statistical analysis. Notably, the research 

assumes equal port accessibility and excludes 

size-based limitations at specific ports. 

MATERIALS AND METHODS 

The NP-Hard Vehicle Routing Problem 

(VRP) has drawn significant research interest 

from researchers seeking to improve efficiency. 

Traditionally, it assumes a single depot, single-

visit customers, and capacity limits. However, 

real-world scenarios require adjustments. Dror 

and Trudeau [1989] and Dror et al. [1994] 

introduced the Split Delivery VRP (SDVRP), 

dividing customer demands among vehicles to 

reduce distance and vehicle count.  

Overcoming traditional VRP constraints, 

the Vehicle Routing Problem with Simultaneous 

Delivery and Pickup, Split Loads, and Time 

Windows (VRPSDPSLTW) model emerges. It 

involves vehicles from a depot serving customers 

while considering simultaneous delivery and 

pickup within time windows. This applies even 

when demand surpasses vehicle capacity, 

enabling multiple visits or multiple-vehicle 

service. In research by Wang et al. [2013], the 

VRPSDPLTW method was utilized, with 

ordered elements denoted as J = 1,2, 3..., n. N0 

(where N0 includes the depot marked as 0 and 

1,2, 3..., n represent customers). Routes involved 

sequential visits by individual vehicles, 

connecting successive customers. All routes 

shared the same depot for departure and return, 

leading to consistent origins and destinations. 

 
Notations: 

𝑄 capacity of each vehicle 

𝑉 set of vehicles, where  𝑘 ∈ 𝑉 

𝑉𝑘 1 if vehicle 𝑘 is selected to serve a customer, 0 otherwise 

 𝐽 set of customers {1, 2, 3, . . . , 𝑛} ∀𝑖, 𝑗 ∈ 𝐽, and 𝑖 ≠  𝑗 

𝑑𝑖𝑗 travel cost (travel distance) between customer 𝑖 and customer 𝑗 

𝑡𝑖𝑗 travel time between customer 𝑖 and customer 𝑗 

𝑣𝑖𝑗 travel speed between customer 𝑘 and customer 𝑗 

𝐷𝑗 delivery demand at customer 𝑗 
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Objective functions: 

min 𝐹1(𝑥) =  ∑ |𝑉𝑘| ∑ 𝑥0𝑗𝑘

𝑗 ∈ 𝑁0𝑘 ∈ 𝑉

 (1) 

 

min 𝐹2(𝑥) =  ∑  ∑  

𝑖 ∈ 𝑁0

∑ 𝑑𝑖𝑗 𝑥𝑖𝑗𝑘 

𝑗 ∈ 𝑁0𝑘 ∈ 𝑉

   (2) 

 

 

 

Constraints: 

∑ 𝑥0𝑗𝑘

𝑗 ∈ 𝑁0

= 1      ∀𝑘 ∈ 𝑉 (3) 

 

∑ 𝑥𝑖𝑢𝑘  − ∑ 𝑥𝑢𝑗𝑘  = 0     ∀𝑢 ∈ 𝐽, ∀𝑘 ∈ 𝑉    

𝑗 ∈ 𝑁0𝑖 ∈ 𝑁0

 (4) 

 

∑ 𝑥𝑖𝑗𝑘 ≥ 1

𝑖 ∈ 𝑁0

    ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝑉  (5) 

 

∑  

𝑘 ∈ 𝑉

∑ 𝑦𝑖𝑗 = 𝐷𝑗

𝑛

𝑖=0,𝑖≠𝑗

        ∀𝑗 ∈ 𝐽 
(6) 

 

∑  

𝑘 ∈ 𝑉

∑ 𝑍𝑖𝑗 = 𝑅𝑗

𝑛

𝑖=0,𝑖≠𝑗

        ∀𝑗 ∈ 𝐽 
(7) 

 

∑ ∑ 𝑥𝑖𝑗𝑘 ≥ 1

𝑖 ∈ 𝑁𝑘 ∈ 𝑉

    ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝑉  (8) 

 

𝑦′𝑖𝑗𝑘 + ∑ 𝑍𝑖𝑗𝑘 ≤ 𝑄

𝑛

𝑖=0,𝑖≠𝑗

        ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝑉  
(9) 

 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑣𝑖𝑗
    ∀𝑖, 𝑗 ∈ 𝐽  

(10) 

 

𝑟𝑖𝑘 +  𝑡𝑖𝑗 − (𝑏𝑖 + 𝑡𝑖𝑗 −  𝑎𝑗 )(1 − 𝑥𝑖𝑗𝑘 ) ≤ 𝑟𝑗𝑘       ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝑁0,  ∀𝑘 ∈ 𝑉  (11) 

 

𝑎𝑖 ≤   𝑟𝑖𝑘 ≤  𝑏𝑖         ∀𝑖 ∈ 𝑁0,  ∀𝑘 ∈ 𝑉  (12) 

 

𝑟𝑖𝑘 +  𝑡𝑖0 − (𝑏𝑖 + 𝑡𝑖0 −  𝑎0 )(1 − 𝑥𝑖0𝑘 ) ≤ 𝑏0       ∀𝑖 ∈ 𝐽, ∀𝑘 ∈ 𝑉  (13) 

𝑟0𝑘 =  𝑎0     ∀𝑘 ∈ 𝑉  

 

(14) 

 

𝑥𝑖𝑖𝑘 =  0        ∀𝑖 ∈ 𝑁0,  ∀𝑘 ∈ 𝑉  (15) 

 

𝑥𝑖𝑗𝑘 ∈  {0,1}      ∀𝑖  , 𝑗 ∈ 𝑁0,  ∀𝑘 ∈ 𝑉  (16) 

𝑅𝑗 pickup demand at customer 𝑗 

𝑥𝑖𝑗𝑘 1 if vehicle 𝑘 travels directly from customer 𝑖 to customer 𝑗, 0 otherwise 

𝑦𝑖𝑗𝑘 amount of goods delivered by vehicle 𝑘 using the route from customer 𝑖 to customer  𝑗 

𝑧𝑖𝑗𝑘 
amount of goods taken from customer 𝑗 by vehicle 𝑘 using the route from customer 𝑖 to 

customer 𝑗 

𝑦′𝑖𝑗𝑘 
remaining amount of goods to be delivered form customer 𝑖 to customer 𝑗 for vehicle 𝑘 

[𝑎𝑖, 𝑏𝑖]
 

time window for each customer ∀𝑖 ∈ 𝑁0 

𝑟𝑖𝑘 time when vehicle 𝑘 starts serving customer 𝑖. 
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Objective (1) is intended to minimize 

vehicles on delivery routes, and objective (2) is 

intended to minimize travel costs. Constraint (3) 

ensures each of the k vehicles goes from the 

depot to customer 𝑗 in set 𝐽 . Constraint (4) 

mandates vehicles to serve customers in 

sequence before returning to the depot. 

Constraint (5) permits a single vehicle to serve a 

customer multiple times. Constraints (6) and (7) 

define total delivery and pickup demands at 

customer 𝑗 . Constraint (8) allows multiple 

vehicles to serve a customer in varying quantities. 

Constraint (9) ensures vehicle 𝑘 's remaining 

delivery and pickup fit its capacity. Constraint 

(10) calculates travel time using distance and 

speed. Constraint (11) regulates the arrival time 

of vehicle 𝑘 at customer 𝑗 after the time 𝑟𝑖𝑘 +
 𝑡𝑖𝑗 if vehicle 𝑘 chooses the route from customer 

𝑖 to customer 𝑗 or earlier than the difference 𝑎𝑗 −
𝑏𝑖  if vehicle 𝑘  does not choose that route. 

Constraint (12) enforces service within 

customer-specified time frames. Constraint (13) 

requires vehicles to reach the depot before 

closing time. Constraint (14) sets vehicle 

departure after the depot opening time 𝑎0. 

This research set out to use Genetic 

Algorithms to effectively optimize simultaneous 

pickup and delivery in the Vehicle Routing 

Problem (VRP) and to improve vessel capacity 

utilization compared to traditional routing 

methods. The study was intended to develop 

solutions that consider split-loads, vessel 

capacity constraints, and travel time constraints, 

as outlined in the Vehicle Routing Problem 

Simultaneous Deliveries and Pickups with Split 

Loads and Time Windows (VRPSDPSLTW). 

Therefore, the primary objectives of this research 

were to enhance vessel capacity utilization 

efficiency within the VRP while maintaining 

compliance with the constraints specified by 

VRPSDPSLTW. 

The outlined scheme (Fig 1) offers a 

structured approach to address Company X's 

issues. It commences with a thorough issue 

analysis, followed by the establishment of 

research goals and constraints. A literature 

review was carried out to gather valuable insights, 

and initial data was collected. The scheme's core 

is the development of a Genetic Algorithm-based 

model for VRPSDPSLTW. Verification and 

validation tests include a feedback loop for 

model refinement. The Genetic Algorithm 

solution was then compared with current 

conditions, leading to a comprehensive analysis. 

The scheme culminates in conclusions and 

recommendations, providing a structured path 

for addressing Company X's challenges. 

 
Fig. 1. Flowchart steps of conducted research  

Source: Own work 

This research employed a variety of data 

types to implement the Genetic Algorithm 

effectively using the process shown in the 

flowchart in Fig. 2. These encompass customer 

booking details (origin, destination, vessel 

information, container quantities), port 

information categorized by region 

(WEST/EAST), standardized port names, 

Company X's vessels grouped by homebase, 

essential vessel specifications (ID, name, 

dimensions, capacity), detailed cargo delivery 

records, accurate port-to-port distances and 

coordinates, and travel durations from port of 

loading (POL) to port of discharge (POD). 
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Fig. 2. Flowchart model for solving VRPSDPSLTW based on genetic algorithm  

Source: Own work. 

 

The Genetic Algorithm (GA) consists of the 

following stages: data preparation, Initial 

Population Initialization, Evaluation, Selection, 

Reproduction (Crossover and Mutation), and 

Population Replacement. Iterations continue 

until the target generation count is reached. 

Evaluation is crucial, assessing individual quality 

and performance. It picks individuals with 

potential traits for better solutions in the next 

generation. The research employs a fitness value 

that combines %utility, penalties for demand 

failure, and overtime. Evaluation follows defined 

stages and formulas. 

 

 

    Shipping Load (TEUs) = Previous Remaining Journey (TEUs) + Loading Quantity 

(TEUs) 

 

 

(20) 

    Remaining (TEUs) = Shipping Load (TEUs) – Unloading Quantity (TEUs) (20) 

    %Utility = Shipping Load (TEUs) / Payload (TEUs) * 100 (20) 

    Travel Time (Days) = Shipping Time (Days) + Port Time (Days) (21) 

    Total Failed Demand (TEUs) = Total Demand (TEUs) – Total Demand Fulfilled 

(TEUs) 

(22) 

    Average %Utility per chromosome =  
Σ  (%Utility from POL to POD in 1 chromosome)

Number of POL–POD journeys in 1 chromosome
 (23) 

    Overtime (Days) = (Travel Time of trip 1 (Days) – 31) + (Travel Time of trip 2 (Days) 

– 31) + ⋯ + (Travel Time of trip n (Days) – 31) 

(24) 

    Penalty Time = {0 if Overtime = 0 day   

                                 100, if Overtime < 5 days   

                                 1000, if Overtime ≥ 5 days} 

(25) 

    Penalty Demand = Total Failed Demand (26) 

    Fitness Value = %Utility – Penalty Demand – Penalty Time (27) 

 

 

Company X does not enforce a specific 

time limit for completing a trip, but it does 

provide standard estimates for sailing hours and 

port time at each port. For this research, an ideal 

total travel time per trip was defined as not 

exceeding 31 days. Any days that surpassed this 

limit were deemed as overtime, resulting in a 

penalty. The implementation of penalty time 

through a Genetic Algorithm (GA) is intended to 

attain the shortest travel time per trip (penalties 

are applied to steer the solution towards the 31-

day mark), thereby optimizing utility while 

minimizing unfulfilled demand.  
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Integrating these elements into the fitness 

value enables GA to assess route performance. 

The selection favors higher %Utility and lower 

Penalty Demand and Time, progressively 

refining solutions for optimal routes and 

enhanced vessel capacity utilization. The 

generated solutions were verified, validated, and 

adjusted for Company X's needs. Result analysis 

is intended to produce high-performance 

solutions aligned with goals. Comparing 

historical data and constraints is a way of 

evaluating the effectiveness of improving cargo 

delivery vessel capacity use. 

RESULTS 

Data Collection and Analysis 

Scenario testing utilized Company X's 

demand data over a one-week period, which was 

used as an input for the GA. Table 1 shows the 

first 5 rows of the booking data that were used as 

forecast demand and further processed.  One 

TEU is equal to one 20-foot container. In total, 

1518 rows of data on forecast demand were 

collected. 

 

Table 1. Forecast demand for scenario testing  

Row POL POD TOTALTEUS 

1 IDSUB IDSSS 57 

2 IDGGG IDSUB 9 

3 IDSSS IDSUB 5 

4 IDSSS IDSUB 1 

5 IDSSS IDSUB 10 

Source: Own work. 

The TOTAL TEU values for matching POL 

and POD pairs were subsequently added up. This 

summed the TEUs for each corresponding POL-

POD combination, leading to a data 

transformation as depicted in Table 2. 
 

Table 2. Aggregated forecast demand based on POL and POD pairs  

POL POD TEUs POL POD TEUs POL POD TEUs POL POD TEUs 

IDZZZ IDSUB 7 IDSUB IDFFF 199 IDNNN IDSUB 328 IDFFF IDSUB 352 

IDYYY IDSUB 323 IDSUB IDGGG 367 IDNNN IDXXX 1 IDEEE IDSUB 268 

IDXXX IDSUB 702 IDSUB IDHHH 70 IDMMM IDSUB 117 IDDDD IDSUB 156 

IDVVV IDABC 201 IDSUB IDJJJ 40 IDLLL IDSUB 383 IDCCC IDSUB 33 

IDVVV IDALM 161 IDSUB IDKKK 375 IDKKK IDABC 7 IDBBB IDSUB 892 

IDVVV IDSUB 116 IDSUB IDLLL 372 IDKKK IDAEF 18 IDAVW IDSUB 22 

IDVVV IDXXX 10 IDSUB IDMMM 207 IDKKK IDALM 43 IDANO IDSUB 5 

IDSUB IDAAA 89 IDSUB IDNNN 123 IDKKK IDCCC 8 IDAMN IDSUB 63 

IDSUB IDABC 86 IDSUB IDPPP 26 IDKKK IDDDD 53 IDAKL IDSUB 595 

IDSUB IDAEF 217 IDSUB IDQQQ 193 IDKKK IDGGG 35 IDAJK IDQQQ 3 

IDSUB IDAEG 14 IDSUB IDSSS 693 IDKKK IDMMM 48 IDAJK IDSUB 545 

IDSUB IDAGH 236 IDSUB IDUUU 54 IDKKK IDNNN 21 IDAHI IDSUB 236 

IDSUB IDAHI 238 IDSUB IDVVV 217 IDKKK IDQQQ 30 IDAGH IDSUB 2 

IDSUB IDAJK 117 IDSUB IDWWW 2 IDKKK IDSSS 63 IDAEF IDSUB 125 

IDSUB IDALM 90 IDSUB IDXXX 158 IDKKK IDSUB 140 IDAEF IDYYY 261 

IDSUB IDAMN 94 IDSUB IDYYY 302 IDKKK IDUUU 6 IDAEF IDZZZ 40 

IDSUB IDAUV 9 IDSUB IDZZZ 35 IDKKK IDVVV 42 IDABC IDSUB 18 

IDSUB IDBBB 639 IDSSS IDSUB 774 IDKKK IDYYY 26 IDABC IDXXX 9 

IDSUB IDCCC 203 IDQQQ IDSUB 217 IDJJJ IDSUB 94 IDAAA IDBBB 1 

IDSUB IDDDD 150 IDPPP IDSUB 36 IDGGG IDKKK 1 IDAAA IDSUB 562 

IDSUB IDEEE 114 IDOOO IDSUB 90 IDGGG IDSUB 336   

Source: Own work. 

 

To determine port visit counts, the 

maximum TEUs achieved from past booking and 

vessel journey data (2018–2022) were identified. 

The highlighted maximum TEUs (Table 2) were 

calculated by finding the most transported TEUs 

from POL to POD in a single vessel journey. 

Next, unique identifiers were assigned to ports 

and their visit counts (VISIT) were determined. 

VISIT represents required visits per port. 

VISITNR was calculated by dividing 

TOTALTEUS (demand) by 

MAXTEUSPERVISIT (highlighted), giving 

estimated visits. The VISIT column in Table 3 
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contains rounded VISITNR values. For example, 

the highest VISIT of 3 for port IDYYY (POD) 

means 3 visits. Table 4 shows resulting visits for 

forecast ports. This led to 85 port visits, 

exceeding the initial 35, as some ports were 

visited multiple times (except Surabaya, dividing 

or serving as home base). 

 

Table 3. Example of calculating the number of visits for IDYYY  

POL POD TOTALTEUS MAXTEUSPERVISIT VISITNR VISIT 

IDYYY IDSUB 323 668 0.484 1 

IDAEF IDYYY 261 523 0.499 1 

IDKKK IDYYY 26 47 0.553 1 

IDSUB IDYYY 302 111 2.721 3 

Source: Own work 

 

Table 4. The required number of visits (count) to each port (35 ports in demand data,  

except for idsub as the home base) for each chromosome  

Port Count Port Count Port Count Port Count Port Count Port Count 

IDAAA 2 IDXXX 2 IDFFF 3 IDKKK 5 IDPPP 1 IDAJK 2 

IDBBB 7 IDYYY 3 IDGGG 4 IDLLL 4 IDAEG 1 IDAKL 3 

IDCCC 2 IDAUV 1 IDAVW 1 IDMMM 3 IDAGH 3 IDALM 3 

IDDDD 3 IDZZZ 1 IDHHH 2 IDNNN 2 IDQQQ 2 IDAMN 2 

IDVVV 3 IDANO 1 IDABC 2 IDOOO 1 IDAHI 2 IDUUU 2 

IDWWW 1 IDEEE 1 IDJJJ 2 IDAEF 3 IDSSS 5   
Total Count = 85 

Source : Own work 

 

Genetic Algorithm 

Here, the decision was taken to establish an 

initial population with 16 chromosomes, each 

representing port collections. Genes in a 

chromosome followed the visit counts in Table 4. 

Notably, IDSUB is different; it acts as a both start 

and an end point, dividing chromosomes into 

trips. The initial Population generated 16 random 

gene combinations. This ensured diverse starting 

points. Each chromosome included 35 ports, 

totaling 85 visits. The initial count of genes in a 

chromosome was 87 (85 visits + 2 IDSUBs at the 

beginning and end of the chromosome). 

However, gene count grows with each 

generation. 

Chromosomes were split into trips via 

trimming, randomly picking 3 to 7 genes 

(excluding IDSUB) per trip. The "Subtle" 

column labels trips, with IDSUBs marking 

partitions. This breaks 1 chromosome into 15 

trips (115 genes), adding 28 new IDSUB genes. 

Data were reshaped for journey analysis, 

streamlining the structure for fitness calculation 

from POL to POD. Table 6 demonstrates this 

transformation, simplifying the original format. 
 

 

Table 5. Original data set format  

Port Chromosome Subgroup 

IDSUB 1 A 

IDAGH 1 A 

IDAUV 1 A 

IDBBB 1 A 

IDSUB 1 A 

Source: Own work 
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Table 6. Data set format after transformation 

POL 
 

POD Chromosome Subgroup 

IDSUB IDAGH 1 A 

    

IDAGH IDAUV 1 A 

IDAUV IDBBB 1 A 

IDBBB IDSUB 1 A 

Source: Own work 

 

Table 7. Demand from IDSUB to IDAEF and number of visits to IDAEF  

POL POD TOTALTEUS POD VISIT 

IDSUB IDAEF 217 3 

Source: Own work 

 

 

 

 

 

Fig. 3. Concept of split loads for demand from IDSUB to IDAED  

Source: Own work 

Load-unload quantities were determined 

based on total TEUs in demand data and visits 

from relevant ports. For instance, if there was a 

demand of 217 TEUs from POL IDSUB to POD 

IDAEF in a given week, with IDAEF visited 

three times within a chromosome, successful 

transport required IDSUB (POL) to precede 

IDAEF (POD). Proportional cargo allocation 

was crucial, and was achieved by dividing total 

TEUs by required visits. During three visits from 

IDSUB to IDAEF, a total of 217 TEUs were 

transported (Table 7), with allocations of 72 

TEUs, 72 TEUs, and 73 TEUs on each visit (Fig. 

3). Unsuccessful visits could occur when the 

POL IDSUB was not visited before the POD 

IDAEF for all three visits, resulting in 

untransported demand (145 TEUs if the 2nd and 

3rd visits fail, or 73 TEUs if only the 3rd visit 

fails). 

 Loading involved direct loading of 

subsequent ports' demands at each POL. At POD, 

a specific portion was unloaded. This continued 

until the trip cargo was 0. The shipping load 

calculation considered TEUs from POL to POD. 

Next, vessel placement maximized each 

trip's cargo. Each chromosome was assigned a 

vessel sequentially, matching the cargo to the 

closest vessel capacity. If this was between ideal 

and historical capacity, the utility calculations 

used the maximum cargo. Vessel assignment 

proceeded until each trip had a vessel. Table 8 

demonstrates this process for a trip in one 

chromosome, outlining load, unload, shipping 

load, and vessel placement. 
 

Table 8. Example calculation results: load, unload, shipping cargo, and vessel placement in a trip for a single chromosome 

POL POD Chromosome 
Subgro

up 
LOAD UNLOAD 

Shipping 

Load 

Max 

Shipping 

Load 

VESSEL 

ID 

VESSEL 

NAME 

PAY 

LOAD 

IDSUB IDAGH 1 A 188 80 188 188 BBB BBBBBB 208 

IDAGH IDAUV 1 A 2 9 110 188 BBB BBBBBB 208 

IDAUV IDBBB 1 A 0 99 101 188 BBB BBBBBB 208 

IDBBB IDSUB 1 A 136 138 138 188 BBB BBBBBB 208 

Source: Own work

In Table 9, the evaluation results of the 

fitness values for all chromosomes in the initial 

population are presented, along with a detailed 

breakdown of the components contributing to the 

fitness value.  
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Table 9. Fitness value calculation results for all chromosomes in the initial population 

Chromosome %Utility FAILED PENALTYDEMAND OVERTIME PENALTYTIME fitness value 

1 80.23 880 880 166 1000 -1799.77 

2 77.2 943 943 130 1000 -1865.8 

3 77.22 589 589 147 1000 -1511.78 

4 73.91 960 960 145 1000 -1886.09 

5 76.67 862 862 131 1000 -1785.33 

6 75.76 1024 1024 127 1000 -1948.24 

7 75.64 811 811 116 1000 -1735.36 

8 79.88 909 909 90 1000 -1829.12 

9 78.6 927 927 108 1000 -1848.4 

10 76.07 928 928 143 1000 -1851.93 

11 80.01 867 867 141 1000 -1786.99 

12 76.52 799 799 105 1000 -1722.48 

13 73.09 759 759 115 1000 -1685.91 

14 77.09 898 898 129 1000 -1820.91 

15 75.74 729 729 111 1000 -1653.26 

16 74.62 777 777 109 1000 -1702.38 

Source : Own work 

Subsequently, selection probability was 

calculated by dividing each individual's fitness 

value by the total fitness value of the population, 

establishing probabilities for the mating pool. 

Employing the roulette wheel method, 

individuals were chosen for the pool using a 

random number in the "rand" column. The first 

chromosome with a cumulative probability 

exceeding the random number entered the pool. 

After pool selection, individuals were paired as 

parent pairs for crossover or genetic 

recombination if criteria were fulfilled, as shown 

in Table 10. 
 

Table 10. Roulette wheel results and parent pairs for crossover 

rand Chromosome Cumulative probability Pair rand Chromosome Cumulative probability Pair 

0.722 12 0.738 1 0.966 16 1 5 

0.08 2 0.1277 1 0.378 7 0.4059 5 

0.041 1 0.0657 2 0.316 6 0.3477 6 

0.814 14 0.8675 2 0.489 9 0.5381 6 

0.597 10 0.6041 3 0.468 8 0.4716 7 

0.497 9 0.5381 3 0.239 4 0.2439 7 

0.663 11 0.6693 4 0.969 16 1 8 

0.131 3 0.1915 4 0.408 8 0.4716 8 

Source : Own work 

After obtaining chromosome pairs, the 

subsequent step involved selecting pairs for 

crossover using a crossover probability (Pc) set 

at 0.9. Crossover occurs if the randomly 

generated number for each pair is below 0.9. 

Employing one-point crossover, a random 

cutting point is assigned to each pair. 

Chromosomes serve as "parents," yielding two 

offspring or "children" with equal chromosomes. 

Initial mutation probability (pm) ranges from 

0.01 to 0.2 for real-world optimization. 

Following crossover, each chromosome's 

randomly generated number between 0 and 1 

determines mutation. If the number is below pm, 

the chromosome mutates, exchanging two 

random gene points (swapping mutation) and 

forming a new offspring chromosome.  

New offspring resulting from crossover and 

mutation are merged with the initial population, 

then evaluated for fitness. Retaining the two best 

chromosomes, merged chromosome averages 

are calculated. If the target generation is not 

reached, chromosomes ranked from 3rd to 100th 

become the next generation's initial population, 

ensuring genetic diversity and optimal outcomes. 

Optimization Results of Scenario Testing 

In this research, the optimization of GA 

solutions for the VRPSDPSLTW problem 

consisted of three key variables: population size, 

mutation probability, and crossover probability. 

The crossover probability was set at 0.9, and the 

initial population size was 16 individuals. The 

mutation probability was tested at 0.01 and 0.2, 
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each repeated five times with the same initial 

population size and 500 generations per trial. 

Analysis of the best fitness value graphs in Fig. 4 

and Fig. 5 reveals convergence at the 500th 

generation for both mutation probabilities. 

Consequently, it can be inferred that under these 

conditions, mutation probabilities of 0.01 and 0.2 

yield similar qualities, facilitating a meaningful 

comparison. 

Table 11. Analysis of mutation probability parameters 

Replicaton 
First Best Fitness Value %Utility Failed Demand (TEUs) OverTime (Days) 

pm = 0.01 pm = 0.2 pm = 0.01 pm = 0.2 pm = 0.01 pm = 0.2 pm = 0.01 pm = 0.2 

1 -978.6 -920.85 76.4 81.15 55 2 141 101 

2 -980.8 -929.72 72.2 79.28 53 9 103 125 

3 -931.05 -921.18 79.95 79.82 11 1 115 127 

4 -938.98 -919.11 79.02 80.89 18 0 153 116 

5 -939.78 -928.74 80.22 80.26 20 9 124 79 

Mean -953.84 -923.92 77.56 80.28 31.4 4.2 127.2 109.6 

Worst -980.8 -929.72 72.2 79.28 55 9 153 127 

Best -931.05 -919.11 80.22 81.15 11 0 103 79 

Source: Own work 

Based on the findings in Table 11, a 

mutation probability of 0.2 demonstrates the 

highest potential for achieving optimal fitness 

values. In this research, higher fitness values 

indicated improved performance and closer 

alignment with objectives. Remarkably, the peak 

fitness value of -919.11 was achieved with a 0.2 

mutation probability, surpassing the 0.01 

probability results. The subsequent sections 

delve deeper into these optimal fitness value 

variables and compare them with the current 

conditions. The consistency of testing with a 

mutation probability of 0.2 is evident, as the best 

solution (-919.11) closely matches the average of 

all tests (-923.92). Fig. 4 and Fig. 5 provide 

supporting visuals, showcasing the best fitness 

values for mutation probabilities of 0.01 and 0.2, 

respectively. 

 

 
 

 

 

 

 

 

 

Fig. 4. The best fitness values for each generation with 500 generations and a mutation probability of 0.01 for each test 

Source: Own work 

 

 

 

 

 

 

 

 

 

Fig. 5. The best fitness values for each generation with 500 generations and a mutation probability of 0.2 for each test 

Source: Own work 
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The optimal fitness value achieved after 

500 generations of testing was -919.11, 

representing a substantial improvement of 

21.13%. This signifies that the average % 

capacity utilization of the tested vessels reached 

80.89%, exceeding the historical average % 

capacity utilization of all vessels in Company X's 

history, which was 59.76% based on the data 

from previous operations. A mutation probability 

of 0.2 exhibits a higher likelihood of producing 

better results compared to 0.01. Although 

convergence solutions were achieved using 500 

generations, the solution still shows a sloping, 

increasing trend; therefore the number of 

generations was increased to 1000. The number 

of generations was also increased to further 

reduce the number of overtime days. Fig. 6 

presents the best fitness values for each 

generation with 1000 generations for each test, 

while Table 12 provides detailed results for each 

test with 1000 generations. 

 
Fig. 6. Best fitness values across 1000 generations with a mutation probability of 0.2 for each test  

Source: Own work 

 

Table 12. The results of five replications with a mutation probability of 0.2 and 1000 generations 

Replication 
First Best Fitness Value %Utility Failed Demand OverTime 

pm = 0.2 pm = 0.2 pm = 0.2 pm = 0.2 

1 -919.07 80.93 0 94 

2 -923.6 78.4 2 138 

3 -918.61 82.39 1 123 

4 -917.54 83.46 1 115 

5 -922.23 79.76 2 76 

Mean 
(1000 

generations) 

-920.21 80.99 1.2 109.2 

Current Best Solution: 

First Best Fitness Value %Utility Failed Demand OverTime 

-919.11 80.89 0 116 

Mean of mutation probability 0.2 with 500 Generations (all tests) 

First Best Fitness Value %Utility Failed Demand OverTime 

-923.92 80.28 4.2 109.6 

Source: Own work 

Test 4, with 1000 generations, 

outperformed the previous best solution with 

higher %Utility (+2.57%), lower Overtime (-1 

day), and improved fitness value (+1.57). 

However, it experienced unmet demand, 

impacting %Utility. As a result, Test 1 was 

chosen as the best solution, showing 

increased %Utility (+0.04) and reduced 

Overtime (-22 days) compared to the previous 

best solution, with no failed demands, providing 

more consistent results than Test 4. Although 

Test 500 met individual requirements, Test 1000 

showed potential for better overall solutions with 

higher %Utility, lower demand failure rate, and 

shorter delivery times. 

The increase in fitness value per generation 

from the optimal solution is visualized in Fig. 7. 

The visualization includes the second-best 

fitness value and the average fitness value of the 

entire population for each generation. 
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Fig. 7. Trend of fitness value per generation for the optimal solution  

Source: Own work 

Table 13 provides a detailed breakdown of 

the output from the GA process that led to the 

optimal fitness value from a total of 15 trips (the 

table displays one sample trip). Fig 8. represents 

the practical results obtained from this single 

sample trip from a total of 15 trips. It presents the 

planned routes to fulfill the designated demand, 

including the load and unload quantities, utility, 

and time required for each journey between POL 

and POD. 

Furthermore, the output also provides 

information regarding the average % capacity 

utilization of the vessel for the entire voyage 

(80.93%), no failed demand (0 TEUs), and the 

total sum of overtime for the entire journey (94 

days). The following section will present a 

comprehensive analysis of these variables. 
 

Table 13. Output of GA process for optimal fitness value (1 out of 15 trips) 

POL POD 

Chro

moso

me 

Subg
roup 

LOA

D 
UNLOAD 

Shipping 

Load 

VESSEL

ID 

VESSEL 

NAME 

PAY 

LOAD 

% 

UTILITY 

TRIP 

TOTAL

TIME 

DAYS 

IDSUB IDAMN 66 A 193 46 193 TTT TTTTTTT 453 42.6 6.14 

IDAMN IDFFF 66 A 31 67 178 TTT TTTTTTT 453 39.29 5.7 

IDFFF IDAKL 66 A 118 0 229 TTT TTTTTTT 453 50.55 5.51 

IDAKL IDAGH 66 A 199 80 428 TTT TTTTTTT 453 94.48 4.48 

ADAGH IDSUB 66 A 2 350 350 TTT TTTTTTT 453 77.26 2.07 

Source: Own work 

 

 

Fig. 8. Practical illustration of GA solution (1 out of 15 trips)  

Source: Own work 

The case study results displayed successful 

TEU demand, but various scenario tests 

uncovered potential forecast demand failures. In 

such cases, unmet demand and its POL and POD 

origins can be identified. Solutions include 

adapting forecast targets or allocating unmet 

demand to future trips.  

Table 14 shows the required time for each 

trip to return to the home base in the proposed 

solution. This total time includes travel time from 

all POL to POD on the trip, added to port time 

(idle time of the vessel), and measured in days. 

Currently, the company does not have an ideal 

figure to determine how long one trip should take 

to fulfill the demand. Therefore, in the 

implemented GA program, the authors apply 

high penalties to solutions with significant total 

overtime (days > 31) across all trips. This is to 

minimize the total time of each journey, getting 

it as close as possible to the ideal figure. The 
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results show that to meet the demand in the real-

case scenario test, 15 trips were required with an 

average delivery time of 35.57 days.  

The case study results revealed no failed 

TEU demand in the utilized scenario, yet various 

tests demonstrated potential forecast demand 

inaccuracies. In such instances, unfulfilled 

demand and its POL and POD origins can be 

displayed. Addressing this entails options like 

refining forecast targets or allocating unfulfilled 

demand to future trips, requiring careful 

consideration of utility maximization, demand 

fulfillment, and travel time trade-offs during the 

GA optimization process. Optimization focus 

adjustments can be realized by reevaluating 

parameters and penalty functions. 
 

Table 14. The time taken by each trip from homebase to return to homebase 

Source: Own work. 

 

The GA program penalized solutions 

exceeding 31 days of overtime across trips to 

align with benchmarks, due to the absence of a 

standard trip duration. Real-case testing 

demanded 15 trips for demand fulfillment and 

successfully achieved an average trip time close 

to 31 days, specifically averaging 35.57 days, 

representing optimal results. 

In the same table, the average vessel 

capacity utilization percentage for all trips is 

presented. This data offers a clear overview of 

trip-level utilization. Notably, each trip's average 

utilization surpasses 60%, with an overall 

average of 80.93%. These findings indicate a 

fairly optimal ship capacity utilization level from 

the GA algorithm. In the detailed analysis, the 

GA solution's utilization is compared with 

historical data to assess improvements in ship 

capacity utilization. 

Table 15 shows the utility evaluation results 

for the selected vessel in GA scenario testing. 

"Result Utility" indicates post-GA optimization, 

while "History Utility" portrays historical usage 

(2019–2022) without GA, reflecting actual 

fulfillment rates. Notably, a 21.23% increase is 

observed. Fig. 9 further illustrates the positive 

impact of GA, with improved vessel 

performance in capacity utilization. All vessels 

experienced enhanced utility after GA 

optimization, showcasing its positive 

contribution to effective vessel capacity 

utilization for cargo delivery. 

A t-test was conducted, with the null 

hypothesis (H0) that there was no difference 

between the population means of Result %Utility 

and History %Utility, and the alternative 

hypothesis (H1) that there was a higher mean for 

Result %Utility. The t-test results (P-Value 

(0.000) < alpha (0.05)) led to the rejection of H0 

and the acceptance of H1. This indicates a 

substantial increase in the mean of 

Result %Utility in comparison to 

History %Utility. 

 

  

  Trip VESSELID VESSELNAME TOTALTIME (Days) %UTILITY TRIP 

1 A TTT TTTTTT 23.90 60.8389 

2 B GGG GGGGGG 25.01 71.8056 

3 C ABO ABOABO 30.38 81.7243 

4 D WWW WWWWWW 40.53 93.6330 

5 E ABY ABYABY 54.22 68.3165 

6 F PPP PPPPPP 46.16 79.2683 

7 G ABU ABUABU 36.18 74.1385 

8 H OOO OOOOOO 36.72 87.8021 

9 I BBB BBBBBB 31.02 91.4530 

10 J ABS ABSABS 48.54 79.9195 

11 K ABR ABRABR 32.32 80.1060 

12 L QQQ QQQQQQ 37.86 91.1635 

13 M RRR RRRRRR 36.61 77.6126 

14 N ABI ABIABI 24.51 86.2894 

15 O YYY YYYYYY 29.51 89.8960 

Mean 35.57 80.93 
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Table 15. Results of utilization evaluation for the involved vessels in solving scenario tests with GA.  

VESSELID VESSELNAME 
% 

Result 

Utility 

% 
History 

Utility 

ABS ABSABS 79.92% 68.12% 

TTT TTTTTT 60.84% 55.54% 

ABR ABRABR 80.11% 54.64% 

ABY ABYABY 68.32% 57.36% 

YYY YYYYYY 89.90% 61.49% 

BBB BBBBBB 91.45% 66.23% 

GGG GGGGGG 71.81% 54.65% 

RRR RRRRRR 77.61% 52.20% 

ABI ABIABI 86.29% 76.32% 

ABO ABOABO 81.72% 53.46% 

PPP PPPPPP 79.27% 59.19% 

OOO OOOOOO 87.20% 63.22% 

QQQ QQQQQQ 91.16% 60.36% 

WWW WWWWWW 93.63% 46.76% 

ABU ABUABU 74.14% 65.67% 

Mean 80.93% 59.70% 

Source: Own work  

 

 

 

 

 

 
 

Fig. 9. Clustered Column Chart: Historical % Utility vs. % Utility Results Using GA 

 

DISCUSSION 

Comparing our study with research by 

Wang et al. [2013], both achieved substantial 

resource utilization enhancements, albeit in 

different contexts. Wang et al. [2013] improved 

land-based vehicle loading efficiency by 12.8% 

using a Hybrid Heuristic Algorithm inspired by 

local search. In contrast, our study focused on 

maritime operations, raising vessel capacity 

utilization by a remarkable 21.23%, from 59.7% 

to 80.93%, using a Genetic Algorithm. 

This comparison highlights the versatility 

of VRPSDPSLTW optimization across logistics 

domains. Whether on land or at sea, optimization 

methodologies promise improved resource 

utilization. While Wang et al. [2013] employed a 

Hybrid Heuristic Algorithm, we used a Genetic 

Algorithm, addressing the same core problem of 

simultaneous deliveries and pickups with split 

loads and time windows (VRPSDPSLTW). 

These findings contribute to the discourse on 

optimizing logistics across diverse contexts. 

  

http://doi.org/10.17270/J.LOG.2023.904


Ferdianti S. A., Widyadana I. G. A., 2023. Vehicle routing problem simultaneous deliveries and pickups with 

split loads and time windows with genetic algorithm (case study in shipping company). LogForum 19 (4), 577-

593, http://doi.org/10.17270/J.LOG.2023.904 

591 

CONCLUSION  

The Genetic Algorithm (GA) effectively 

tackled the complex VRP with simultaneous 

pickup and delivery, split-loads, vessel capacity, 

and time window constraints (VRPSDPSLTW) 

optimization problem. Employing GA with 1000 

generations, 0.9 crossover probability, and 0.2 

mutation probability, vessel capacity utilization 

significantly rose to 80.93%, a remarkable 21.23% 

enhancement from the prior 59.7%. GA 

innovatively devised routes, yielding superior 

capacity utilization while considering empty 

container loads. Notably, the GA solution 

adeptly managed port visits, split-loads, time, 

and vessel capacity for POL to POD trips. The 

average trip duration was approximately 35 days, 

aligning closely with the 31-day target. 

Achieving a 100% sales target validated GA's 

efficacy. 

However, it is essential to acknowledge the 

study's limitations. The research relied on 

anonymized historical data within a specific 

timeframe and uniform assumptions. Software 

choices simplify the model but might not account 

for the nuances of real-world operations. 

Additionally, the assumption of equal port 

accessibility and the exclusion of size-based 

limitations at specific ports could affect the 

generalizability of the findings. These limitations 

should be considered when interpreting the 

results and offer opportunities for further 

research to refine the model and address these 

constraints. Future research endeavors could 

explore multi-objective GA approaches for 

conflicting goals and incorporate real-world 

factors such as stochastic voyage time and time-

dependent demand to enhance the applicability 

of the optimization solution. 

RECOMMENDATIONS 

To enhance the GA's performance in future 

research, the following suggestions can be 

considered: 

• Modify the crossover operator: Test 

different crossover operators to explore the 

possibility of finding more efficient 

solutions for the VRPSDPSLTW context. 

• Consider weather factors: Analyze the 

impact of weather conditions on vessel 

voyages for the researched routes and 

evaluate their effects on travel time. 

• Expand research to involve all Company 

X's vessels from various homebases, 

including Jakarta port as the homebase for 

vessel journeys, and consider demand for 

all POL to POD services from the west and 

east regions. 

By taking these recommendations into 

account, future research is expected to provide 

solutions that are closer to actual conditions, 

more efficient, and optimal in resolving the 

VRPSDPSLTW problem. 
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