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ABSTRACT. Background: Supply chain management is becoming more complex and essential with the development 

of the economy and globalization. Due to several interrelated and integrated logistical components, today's global supply 
chains are typically nonlinear dynamical systems that may show unpredictable, chaotic, or counterintuitive behaviors. In a 

volatile business environment, a company must integrate a decision-making strategy to achieve its strategic goals. 

Digitizing any business can keep up with supply chains that have become increasingly global and complex. 

Methods: Digital transformation has been rapidly adopted across supply chain networks. A three-echelon supply network 
has been formulated in discrete time domains for exploring the complex behavior of the dynamical system. The discrete-

time models fit more naturally to describe supply chain activities. This paper presents the adaptive management strategy to 

control the dynamic supply chain systems under uncertainty. The adaptive law is implemented based on the gradient descent 

method so that it can readily update the control gains of the decision-making strategy. The efficient management strategy 
helps policymakers implement a decision-support system more precisely and timely. 

Results: The paper aims to implement the PID controller with adaptation law in supply chain management's chaotic 

suppression and synchronization problems under stochastic events. Numerical simulations are presented to evaluate the 

validity of the proposed algorithms for the operations management of dynamic supply chain networks. The proposed 
adaptive control strategy provides superior performance and accuracy over classical control strategies. The decision-

making algorithms ensuring business profitability are realized by an adaptive management strategy to cope with market 

disruptions. 

Conclusions: Disruptions like customer demand and market conditions impact on the multi-echelon supply chain system. 
A novel adaptive management strategy is presented to regulate uncertain supply chain systems against market disruptions. 

The control policy effectively utilizes chaos suppression and synchronization schemes to manage complex supply chain 

networks. The proposed management solutions will help logistics providers prepare for the future and gain a competitive 

advantage guaranteeing business resilience and sustainability against a volatile market. 
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INTRODUCTION 

From the present perspective, supply chain 

management is becoming more complex and 

essential with the development of the economy 

and globalization. Due to several interrelated and 

integrated logistical components, today's global 

supply chains are typically nonlinear dynamic 

systems that may show unpredictable, chaotic, or 

counterintuitive behaviors. A company must 

integrate a decision-making strategy to achieve 

its goals in a volatile business environment. 

Digitizing any business can keep up with supply 

chains that have become increasingly global and 

complex. Digital transformation has been rapidly 

adopted across supply chain networks. 

Controlling and managing the supply chain 

system is more necessary for digital 

transformation. The control theory can help 

assist in more effective decisions and improve 

operational performance. For more than a 
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decade, many researchers have studied the issues 

of supply chain design, analysis, modeling, and 

planning with a nonlinear framework. Most 

works deal with supply chain systems with 

continuous-time models, and just a few papers 

analyzed supply chain systems with discrete-

time models. These discrete-time models fit 

more naturally to describe supply chain 

activities. In supply chain systems, some 

imponderable factors might result in nonlinearity 

and chaotic activities (Kocamaz et al., 2016). The 

complexity of uncertainty has become the norm 

in real supply chains. The chaotic supply chain 

system is one of many supply chain systems 

becoming the subject of analysis and research. 

Although chaotic behavior is often considered an 

undesirable phenomenon, it can provide 

beneficial features to describe complex nonlinear 

dynamics of the systems. Chaotic behaviors in 

the supply chain networks are sometimes caused 

by sudden changes in demands, disrupted by 

transportation, weather, disasters, pandemics, 

and more uncertain factors. The global pandemic 

and wars have recently posed challenges to 

supply chains and worldwide 

logistics,  triggering new research areas in supply 

chain resilience (Ivanov, 2022). To propose the 

mathematical model for complex supply chain 

systems, numerous studies have been done on 

various chaotic systems like Chua, Lorenz, 

Sprott, Jerk, Lu, etc. Lorenz studied chaos 

mathematically for the first time in 1963. The 

chaotic supply chain modeling with the bullwhip 

effect was introduced (Lei et al., 2006). A three-

echelon supply chain with bifurcation analysis 

and synchronization problems has been 

described by Anne et al. (2009). Xu et al. (2021) 

introduced a system dynamics method to manage 

a chaotic supply chain based on adaptive sliding 

mode control. Cuong et al. (2021) analyzed a 

production–distribution model in the nonlinear 

supply chain system using the adaptive sliding 

mode controller. Many methods are proposed for 

modeling the supply chain systems. The system 

dynamics can be analyzed in continuous-time 

form (Anne et al., 2009; Ardakani et al., 2020; 

Cuong et al., 2021; Ghadimi & Aouam, 2021; 

Lei et al., 2006), while some researchers analyze 

the system in discrete-time form (Tempelmeier, 

2006). In aspects of the relationship between 

productivity and distribution, some articles 

discuss a mixed-integer programming model for 

a multi-period, multi-product supply chain 

considering conflicting economic and social 

responsibility objectives (Ardakani et al., 2020); 

optimizing the production capacity and safety 

stocks in a serial production–distribution system 

providing multiple products under a guaranteed 

service approach (Ghadimi & Aouam, 2021); 

analyzing and managing production–distribution 

in a nonlinear supply chain model using sliding 

mode control theory (Cuong et al., 2021). A 

multi-echelon nonlinear framework, which can 

be transformed into the Lorenz equation as a 

chaotic demonstration, has been presented to 

describe the supply chains considering the 

production of the manufacturer, distributor 

storage, retailer transportation, safety stock, and 

customer satisfaction (Lei et al., 2006; Anne et 

al., 2009; Xu et al., 2021). Numerous chaotic 

cases exist in complex supply chain networks, 

and economic and business models. A small 

change can be amplified to have a large effect on 

the system with a highly sensitive dependence on 

initial conditions. Chaotic phenomena contribute 

to exploring short-term changes in demand as the 

disruptive behavior experienced within the 

supply chain networks. For the decision-making 

strategy on chaotic suppression and 

synchronization problems, the control theory 

might provide sufficient mathematical tools to 

analyze, design, and simulate the supply chain 

management systems based on a system 

dynamics approach (Sarimveis et al., 2008). The 

main goals of chaotic system control are to 

realize the closed-loop supply chain systems for 

removing chaotic behaviors and synchronizing 

sudden changes in market demands. Several 

control theories have been proposed in regulating 

chaotic systems: linear feedback control 

(Kocamaz & Uyaroğlu, 2014) was considered to 

regulate continuous time Rucklidge chaotic 

system; an adaptive sliding mode controller (Xu 

et al., 2021; Cuong et al., 2021) was realized in 

managing chaotic supply chains in a stochastic 

environment; intelligent control and 

synchronization of chaotic supply chains 

(Kocamaz et al., 2016) were implemented using 

adaptive neuro-fuzzy inference system; and 

robust controllers (Govindan & Cheng 2018; 

Gholami et al., 2019; Zhang & Cui, 2021) were 

proposed for dynamical systems, ensuring 

robustness against disturbances. Among the 

control theories, the PID controller is considered 

a robust control technique for nonlinear 

dynamical systems (Amir et al., 2020). This 

controller is still widely used because of its 

structural simplicity, reputation, robustness, and 
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easy implementation. Its form is built based on 

the current tracking error, the sum of recent 

errors, and the derivative of the error. This paper 

aims to implement the PID controller with an 

adaptation law in the supply chain management's 

chaotic suppression and synchronization 

problems under stochastic events. An adaptation 

law will be designed based on errors between the 

actual system affected by disturbances and the 

system in ideal condition. The adaptation law can 

be integrated with other controllers such as 

sliding mode control (Chang & Yan, 2005); 

based on system error (Tsai et al., 2017; Zhang 

& Cui, 2021), and so on. The structure of this 

article has 5 sections. Section 2 introduces the 

supply chain system model with a local stability 

analysis. This is a discrete-time model using the 

Lorenz equation. The adaptive PID control 

synthesis with stability analysis is described in 

Section 3. Section 4 presents the results of 

numerical simulations to demonstrate the 

effectiveness of the designed control strategy. 

Finally, conclusions are made in Section 5. 

MATHEMATICAL MODEL OF 

NONLINEAR SUPPLY CHAIN 

SYSTEMS 

In this study, a multi-stage or multi-echelon 

supply chain system consists of multiple tiers, 

such as the manufacturer, the distributor, the 

retailer, and the customer. For dynamic 

modeling, an essential requirement is a clear 

understanding of the relationship among many 

elements in the supply chain systems. The 

dynamic model creates three typical processes: 

the manufacturer producing, the distributor 

handling, and the retailer shipping products to 

customers. The complex model incorporates 

different flows of activities, mechanisms, and 

functions. The generic supply chain model is 

shown in Fig. 1. 

 

 
Fig. 1. Schematic diagram of the generic supply chain model. 

Excellent supply chain management is 

crucial to profitability and maximizing customer 

satisfaction for any business. While typical 

management models are effectively described in 

a discrete-time domain, the supply chain 

dynamics are formulated and defined at each 

instance. It is noted that a fundamental variable 

is an inventory (or stock) in each echelon of the 

supply chain network. For the mathematical 

model, the following notations are used in this 

research (Lei et al., 2006): 

𝑖 Time period. 

𝑥𝑖  The quantity that the retailer of the 

products sends to the customer in the current 

period. 

𝑦𝑖  The quantity that the distributor of the 

products handles in the current period. 

𝑧𝑖  The quantity of products the 

manufacturer produces in the current period. 

𝛾 The delivery efficiency of the distributor. 

𝜎 The efficiency of the customer demand. 

휀 The efficiency of the retailer sending an 

order to the distributor. 

𝜃  The safety coefficient of the 

manufacturer. 

𝑑 The stochastic disturbance. 

𝑢  The control action in the decision-

making. 
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In reality, the demand information 

transferred between each chain is delayed, 

leading to lead time in the supply chains. It 

means that the current order that the distributor 

received in the current period is the demand order 

of the retailer in the previous period. The 

quantity of the products that the retailer sends to 

the customer, 𝑥𝑖 , depends on the number of 

products delivered from the distributor to the 

retailer and the number of satisfied customers in 

the previous period. This relation is given as 

follows: 

 

𝑥𝑖 = 𝛾𝑦𝑖−1 − 𝜎𝑥𝑖−1 (1) 

The quantity of the products the distributor 

handles, 𝑦𝑖 , is affected by the manufacturer's 

production and the retailer's order (𝑥𝑖−1𝑧𝑖−1). It 

also depends on the number of products the 

retailer sends to customers. The quantity of 

products the distributor sends to the retailer is 

given below: 

 

𝑦𝑖 = 휀𝑥𝑖−1 − 𝑥𝑖−1𝑧𝑖−1       (2) 

The last echelon in the system is the 

manufacturer, in which 𝑧𝑖−1 denotes the number 

of products the manufacturer produces in the 

current period. To make a production decision 

exactly, the manufacturer has to get information 

from both the retailer and distributor (𝑥𝑖−1𝑦𝑖−1). 

In the real market, the manufacturer often makes 

more than demand, and it requires the safety 

coefficient based on the previous period (𝜃𝑧𝑖−1). 

The quantity of products the manufacturer 

produces is given below, 

 

𝑧𝑖 = 𝑥𝑖−1. 𝑦𝑖−1 + 𝜃𝑧𝑖−1 (3) 

where 𝜃 is the relative number, which is the 

supplier's capacity. This sometimes makes the 

quantity produced more or less than the previous 

period's demand or quite different from the 

demand they received from the market. 

However, in reality, the supply chain 

system is affected by many stochastic factors. 

The real disturbances are introduced into the 

system as stochastic signals and added to the 

model, which can be used to describe actual 

market conditions. Then, the complete model is 

written as follows: 

 

𝑥𝑖 = 𝛾𝑦𝑖−1 − 𝜎𝑥𝑖−1 + 𝑑𝑥𝑖−1
 

𝑦𝑖 = 휀𝑥𝑖−1 − 𝑥𝑖−1𝑧𝑖−1 + 𝑑𝑦𝑖−1
 

𝑧𝑖 = 𝑥𝑖−1. 𝑦𝑖−1 + 𝜃𝑧𝑖−1 + 𝑑𝑧𝑖−1
 

(4) 

where the disturbances (𝑑𝑥𝑖−1
, 𝑑𝑦𝑖−1

, and 

𝑑𝑧𝑖−1
) are given by the Wiener process or 

Brownian process and the widely used random or 

stochastic process. Brownian motion is 

frequently used to model supply chain systems 

and finance problems. It has been noted that 

stochastic behavior occurs in a deterministic 

manner in supply chain systems. The equilibrium 

analysis of the ideal system without disturbances 

is presented to explore the local behaviors of the 

nonlinear dynamical model. The specific 

parameters of the system are chosen as 
(𝛾, 𝜎, 휀, 𝜃) = (10 ; 5 ; 1 5 ; − 0.2) for numerical 

analysis. The three equilibrium points are 

determined by 𝐸1 = (0 ; 0 ; 0) , 𝐸2 =
(1.267 ; 0 . 76 ; 0 . 802)  and 𝐸3 =
(−1.267 ; − 0.76 ; 0 . 802). The Routh–Hurwitz 

criterion checks the local stability of near 

equilibrium points. Using the Jacobian matrix, 

the eigenvalues ( 𝜆𝐸𝑖
) of equilibrium points 

(𝐸1, 𝐸2, and 𝐸3) are obtained as follows: 

 

𝜆𝐸1
= (−15 ; 1 0 ; − 0.2) 

𝜆𝐸2
= 𝜆𝐸3

= (−14.6583 ; 9 . 5351 ; − 0.0768) 

 (5) 

where the eigenvalues identify unstable 

equilibria of a set of difference equations. As 

illustrated in Fig. 2, it is unstable if any 

eigenvalue at the equilibrium point has a positive 

real value. It is worth noting that this equilibrium 

analysis provides only the local stability of the 

ideal system. 
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Fig. 2. Equilibrium analysis for the ideal system 

Next, Fig. 3 shows the system response characteristics in the given periods (52 weeks of the stock 

level), including the ideal and uncertain systems with stochastic effects. 

 
(a) 

 
(b) 
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(c) 

Fig. 3. Time responses of the supply chain system (in 52 weeks): (a) product retailer ships to the customer, (b) quantity of 

products handled by the distributor, and (c) product produced by the manufacturer. 
 

DESIGN OF ADAPTIVE 

MANAGEMENT STRATEGY 

The key objective in robust supply chain 

management is to satisfy customer demand while 

keeping optimal inventory (stock) levels in each 

echelon of the network against market 

disruptions. The robustness is related to the 

ability of the supply chains to resist changes 

under various (external or internal) disturbances. 

Building a robust management strategy gains 

more and more significance in the face of volatile 

markets. There is no single best way to realize an 

efficient supply chain strategy. In this study, a 

management strategy is designed based on the 

robust adaptive controller for making decisions 

quickly and efficiently. It is noted that efficient 

decision-making is essential for business success 

against disruptions. At each stage, the control 

input is the product in the system's transportation. 

For the closed-loop system design, a specific 

control input signal is introduced as 𝑢𝑖  in the 

system (4). Then, the complete system is written 

in a compact form incorporating disturbance and 

control input as follows: 

 

𝑥𝑖 = 𝛾𝑦𝑖−1 − 𝜎𝑥𝑖−1 + 𝑑𝑥𝑖 + 𝑢𝑥𝑖 
𝑦𝑖 = 휀𝑥𝑖−1 − 𝑥𝑖−1𝑧𝑖−1 + 𝑑𝑦𝑖 + 𝑢𝑦𝑖 

𝑧𝑖 = 𝑥𝑖−1𝑦𝑖−1 + 𝜃𝑧𝑖−1 + 𝑑𝑧𝑖 + 𝑢𝑧𝑖 

(6) 

As seen in Figs. 2 and 3, the chaotic 

attractor is observed when the system parameter 

values are chosen explicitly as follows: 

(𝛾, 𝜎, 휀, 𝜃) = (10 ; 5; 15 ; − 0.2) , in which the 

external disturbances ( 𝑑𝑥𝑖 , 𝑑𝑦𝑖  and 𝑑𝑧𝑖 ) are 

described as stochastic processes. This model 

illustrates chaotic and complex dynamical 

behaviors within the framework of nonlinear 

dynamical systems (Xu et al., 2021). As 

mentioned, numerous chaotic phenomena exist 

in complex supply chain networks, illustrating 

sensitivity to initial conditions. Adaptive PID 

control with an adaptation law will be employed 

to change the dynamics of the supply chain 

model. As the controlled supply chain network 

becomes more extensive and complex, the 

supervisory controller will be additionally 

realized in the control system as the model-based 

strategy for discrete event models, which can be 

considered the boundary of the control system. 

Then the control input is given by a two-stage 

control mechanism, 

 

𝑢 = 𝜂𝑢𝑝𝑖𝑑 + 𝜇𝑢𝑠    (7) 

where 𝜂 and 𝜇 are the effect factors of each 

control element; 𝑢𝑝𝑖𝑑  is the PID controller 

signal; 𝑢𝑠 is the supervisory controller, which 

will be activated only when the state of the 

system exceeds some bounds and guarantees the 

stability of the system. Based on the gradient 

method, a proper adaptive law is designed to 

minimize the tracking error by updating control 

gains. Fig. 4 shows the general structure of the 

proposed adaptive control synthesis.
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Fig. 4. Block diagram of the proposed adaptive control strategy 

 

 

This two-state control scheme is intended to 

achieve better performance and strong 

robustness under stochastic events for making 

excellent and timely management decisions. In 

supply chain management, if the chaotic 

phenomena at stock levels across the stages 

cause unwanted problems, an active control 

scheme becomes necessary to eliminate 

undesirable dynamical behaviors. Furthermore, 

the synchronization scheme is essential for 

ensuring punctual optimal stock level, even if it 

has chaotic trajectories due to disruptions. Both 

scenarios are comprehensively discussed to 

guarantee a practical management strategy. 

Dynamic suppression scheme 

Since a classical PID controller is a reliable 

controller with a simple structure, it has been 

widely used in many applications for several 

decades (Parnianifard et al., 2020). The discrete 

form of the controller is generally given as 

follows: 

𝑢𝑝𝑖𝑑_𝑖 = 𝐾𝑝𝑒𝑖 + 𝐾𝑖 ∑ 𝑒𝑗

𝑖

𝑗=0

+ 𝐾𝑑(𝑒𝑖 − 𝑒𝑖−1) 

   (8) 

The difference in the control signals taking 

data consecutively is given below: 

 

𝛥𝑢𝑖 = 𝑢𝑖 − 𝑢𝑖−1

= 𝐾𝑝(𝑒𝑖 − 𝑒𝑖−1)

+ 𝐾𝑖𝑒𝑖

+ 𝐾𝑑(𝑒𝑖 − 2𝑒𝑖−1

+ 𝑒𝑖−2) 

       (9) 

From Eqs. (8) and (9), the control signal 

𝑢𝑝𝑖𝑑is described by, 

 

𝑢𝑝𝑖𝑑_𝑖 = 𝐾𝑝(𝑒𝑖 − 𝑒𝑖−1) + 𝐾𝑖𝑒𝑖

+ 𝐾𝑑(𝑒𝑖 − 2𝑒𝑖−1

+ 𝑒𝑖−2) + 𝑢𝑝𝑖𝑑_𝑖−1 

(10) 

where 𝑒𝑖 , 𝑒𝑖−1 , and 𝑒𝑖−2  are the error 

signals, and 𝐾𝑝 , 𝐾𝑖 , and  𝐾𝑑  specify the 

proportional, integral, and derivative gains, 

respectively. The vector of the tracking errors is 

defined as 𝑒𝑖 = [𝑒𝑥𝑖, 𝑒𝑦𝑖 , 𝑒𝑧𝑖]
𝑇

, and they can be 

given by 

 

𝑒𝑥𝑖 = 𝑥𝑟 − 𝑥𝑖, 𝑒𝑦𝑖 = 𝑦𝑟 − 𝑦𝑖, 

and 𝑒𝑧𝑖 = 𝑧𝑟 − 𝑧𝑖 
(11) 

where 𝑥𝑟 , 𝑦𝑟 , and 𝑧𝑟  are the desired 

reference signals for the system. Eq. (6) is re-

written in compact form using matrices and 

vectors: 

 

𝑤𝑖 = 𝐴𝑤𝑖 + 𝑓(𝑤𝑖) + 𝑑𝑖 + 𝑢𝑖 (12) 

where 𝑤𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇 , 𝑓(𝑤𝑖) =

[0, −𝑥𝑖𝑧𝑖, 𝑥𝑖𝑦𝑖]𝑇 , 𝑑𝑖 = [𝑑𝑥𝑖, 𝑑𝑦𝑖 , 𝑑𝑧𝑖]
𝑇

and 𝑢𝑖 =

[𝑢𝑥𝑖, 𝑢𝑦𝑖, 𝑢𝑧𝑖]
𝑇

. 

Using the error vector,  𝑒𝑖 = 𝑤𝑟 − 𝑤𝑖 , the 

control signal at each instance in the system is 

given by  
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𝑢𝑝𝑖𝑑 = [

𝑢𝑝𝑖𝑑_𝑥𝑖

𝑢𝑝𝑖𝑑_𝑦𝑖

𝑢𝑝𝑖𝑑_𝑧𝑖

] = [

𝐾𝑝𝑥(𝑒𝑥𝑖
− 𝑒𝑥𝑖−1

) + 𝐾𝑖𝑥𝑒𝑥𝑖
+ 𝐾𝑑𝑥(𝑒𝑥𝑖

− 2𝑒𝑥𝑖−1
+ 𝑒𝑥𝑖−2

) + 𝑢𝑝𝑖𝑑_𝑥𝑖−1

𝐾𝑝𝑦(𝑒𝑦𝑖
− 𝑒𝑦𝑖−1

) + 𝐾𝑖𝑦𝑒𝑦𝑖
+ 𝐾𝑑𝑦(𝑒𝑦𝑖

− 2𝑒𝑦𝑖−1
+ 𝑒𝑦𝑖−2

) + 𝑢𝑝𝑖𝑑_𝑦𝑖−1

𝐾𝑝𝑧(𝑒𝑧𝑖
− 𝑒𝑧𝑖−1

) + 𝐾𝑖𝑧𝑒𝑧𝑖
+ 𝐾𝑑𝑧(𝑒𝑧𝑖

− 2𝑒𝑧𝑖−1
+ 𝑒𝑧𝑖−2

) + 𝑢𝑝𝑖𝑑_𝑧𝑖−1

] (13) 

 

 

To derive the adaption laws for the control 

gains, the error function is defined below. 

 

𝐸𝑖 =
1

2
𝑒𝑖

𝑇𝑒𝑖 =
1

2
(𝑒𝑥𝑖

2 + 𝑒𝑦𝑖
2 + 𝑒𝑧𝑖

2 ) 
(14) 

The parameters (𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 ) can be 

tuned by using the gradient descent method. The 

rules to update the controller parameters are 

 

𝐾𝑃𝑗(𝑖 + 1) = 𝐾𝑃𝑗(𝑖) + 𝛥𝐾𝑃𝑗(𝑖) (15) 

𝐾𝐼𝑗(𝑖 + 1) = 𝐾𝐼𝑗(𝑖) + 𝛥𝐾𝐼𝑗(𝑖) (16) 

𝐾𝐷𝑗(𝑖 + 1) = 𝐾𝐷𝑗(𝑖) + 𝛥𝐾𝐷𝑗(𝑖) (17) 

where the subscript is specified by 𝑗 =
{𝑥, 𝑦, 𝑧} . Using the chain rule, the following 

equations are obtained: 

 

𝛥𝐾𝑃𝑗 = −𝜓𝑃𝑗

𝜕𝐸𝑖

𝜕𝐾𝑃𝑗

= −𝜓𝑃𝑗

𝜕𝐸𝑖

𝜕𝑒𝑗𝑖

𝜕𝑒𝑗𝑖

𝜕𝑗𝑖

𝜕𝑗𝑖

𝜕𝑢𝑝𝑖𝑑 _ 𝑗

𝜕𝑢𝑝𝑖𝑑 _ 𝑗

𝜕𝐾𝑃𝑗

= 𝜓𝑃𝑗𝑒𝑗𝑖 . (𝑒𝑗𝑖 − 𝑒𝑗𝑖−1) 

(18) 

𝛥𝐾𝐼𝑗 = −𝜓𝐼𝑗

𝜕𝐸𝑖

𝜕𝐾𝐼𝑗

= −𝜓𝐼𝑗

𝜕𝐸𝑖

𝜕𝑒𝑗𝑖

𝜕𝑒𝑗𝑖

𝜕𝑗𝑖

𝜕𝑗𝑖

𝜕𝑢𝑝𝑖𝑑 _ 𝑗

𝜕𝑢𝑝𝑖𝑑 _ 𝑗

𝜕𝐾𝐼𝑗

= 𝜓𝑃𝑗𝑒𝑗𝑖
2 

(19) 

𝛥𝐾𝐷𝑗 = −𝜓𝐷𝑗

𝜕𝐸𝑖

𝜕𝐾𝐷𝑗

= −𝜓𝑗

𝜕𝐸𝑖

𝜕𝑒𝑗𝑖

𝜕𝑒𝑗𝑖

𝜕𝑗𝑖

𝜕𝑗𝑖

𝜕𝑢𝑝𝑖𝑑 _ 𝑗

𝜕𝑢𝑝𝑖𝑑 _ 𝑗

𝜕𝐾𝐷𝑗

= 𝜓𝑃𝑗𝑒𝑗𝑖 . (𝑒𝑗𝑖 − 2𝑒𝑗𝑖−1 + 𝑒𝑗𝑖−2) 

(20) 

 

 

where 𝜓𝑃𝑗, 𝜓𝐼𝑗 , and 𝜓𝐷𝑗  are the positive 

learning rates (𝑗 = {𝑥, 𝑦, 𝑧}). Next, the model-

based approach to supervisory control is realized 

as follows: 

 

𝑢𝑠𝑖 = −𝐴𝑤𝑖 − 𝑓(𝑤𝑖) − 𝑑𝑖 + 𝛿𝑖 (21) 

where 𝛿𝑖 = [𝛿𝑥𝑖, 𝛿𝑦𝑖 , 𝛿𝑧𝑖]
𝑇

is the positive 

value set. Next, the closed-loop stability of the 

system will be analyzed using the Lyapunov 

theory. 

Theorem 1: The system trajectories of the 

controlled supply chain system (6) converge to 

the set points in finite time if the controller is 

designed as Eq. (7) and adaptive law as Eqs. 

(15)–(17). 

Proof: First, the Lyapunov energy function is 

considered as follows: 

 

𝑉2𝑖
=

1

2
𝑒𝑖

𝑇𝑃𝑒𝑖 
(22) 

where P is a positive definite symmetric 

matrix satisfying the Lyapunov equation: 

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 (23) 

and Q is also a positive definite symmetric 

matrix chosen by the system designer. The 

difference in function 𝑉2 is defined by 

𝛥𝑉2𝑖+1
= 𝑉2𝑖+1

− 𝑉2𝑖
 (24) 

The stable condition is defined as 𝛥𝑉2 ≤ 0. 

Eq. (24) is re-written as:  
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∆𝑉2𝑖+1
=

1

2
𝑒𝑖+1

𝑇 𝑃𝑒𝑖+1 −
1

2
𝑒𝑖

𝑇𝑃𝑒𝑖 =
1

2
𝑒𝑖+1

𝑇 𝑃(𝑤𝑖+1 − 𝑤𝑖) −
1

2
𝑒𝑖

𝑇𝑃𝑒𝑖   

=
1

2
𝑒𝑖+1

𝑇 𝑃(𝐴𝑤𝑖 + 𝑓(𝑤𝑖) + 𝑑𝑖 + 𝑢𝑖 − 𝐴𝑤𝑖−1 − 𝑓(𝑤𝑖−1) − 𝑑𝑖−1 − 𝑢𝑖−1) −
1

2
𝑒𝑖

𝑇𝑃𝑒𝑖  

= −
1

2
𝑒𝑖+1

𝑇 𝑃[𝐴(𝑤𝑖−1 − 𝑤𝑖) + (𝑓(𝑤𝑖−1) − 𝑓(𝑤𝑖)) + (𝑑𝑖−1 − 𝑑𝑖) + (𝑢𝑖−1 − 𝑢𝑖)]
1

2
𝑒𝑖

𝑇𝑃𝑒𝑖                    (25) 

= −
1

2
𝑒𝑖+1

𝑇 𝑃[𝐴(𝑤𝑖−1 − 𝑤𝑖) + (𝑓(𝑤𝑖−1) − 𝑓(𝑤𝑖)) + (𝑑𝑖−1 − 𝑑𝑖) + 𝜂𝑢𝑝𝑖𝑑𝑖−1 + 𝜇𝑢𝑠𝑖−1 − 𝜂𝑢𝑝𝑖𝑑𝑖
− 𝜇𝑢𝑠𝑖

] −
1

2
𝑒𝑖

𝑇𝑃𝑒𝑖 

= −
1

2
𝑒𝑖+1

𝑇 𝑃[𝐴(𝑤𝑖−1 − 𝑤𝑖) + (𝑓(𝑤𝑖−1) − 𝑓(𝑤𝑖)) + (𝑑𝑖−1 − 𝑑𝑖) + 𝜂𝑢𝑝𝑖𝑑𝑖−1

+ 𝜇(−𝐴𝑤𝑖−1 − 𝑓(𝑤𝑖−1) − 𝑑𝑖−1 − 𝛿𝑖−1) − 𝜂𝑢𝑝𝑖𝑑𝑖
− 𝜇(−𝐴𝑤𝑖 − 𝑓(𝑤𝑖) − 𝑑𝑖 − 𝛿𝑖)] −

1

2
𝑒𝑖

𝑇𝑃𝑒𝑖 

= −
1

2
𝑒𝑖+1

𝑇 𝑃[𝜂𝑢𝑝𝑖𝑑𝑖−1 − 𝜂𝑢𝑝𝑖𝑑𝑖
− 𝛿𝑖−1 + 𝛿𝑖] −

1

2
𝑒𝑖

𝑇𝑃𝑒𝑖  

 

 

 

In the formula, some assumptions are made, 

such as 𝛿𝑖−1 ≤ 𝜂𝑢𝑝𝑖𝑑(𝑖−1) and 𝛿𝑖 ≥ 𝜂𝑢𝑝𝑖𝑑(𝑖) , 

so that 𝛥𝑉2(𝑒𝑖) ≤ 0  is ensured for the closed-

loop stability. The proof is completed. ∎ 

By employing Theorem 1, the proposed 

control strategy realizes the suppression scheme. 

Synchronization scheme 

The previous section shows how to design 

an adaptive management strategy to suppress 

deterministic chaos. With a synchronization 

strategy, the business enterprises would produce 
the exact number of goods necessary to meet 

actual demand in real-time. It uses a control input 

to force the system toward the desired value. In 

this scheme, it is essential to define the ideal 

reference model of a nonlinear master and slave 

chaotic system. The control input will drive the 

chaotic system (slave), affected by disturbances, 

to follow the ideal supply chain dynamics 

(master). The ideal reference system equation 

(master) is given by 

 

𝑥𝑟𝑖
′ = 𝛾𝑦𝑟𝑖−1

′ − 𝜎𝑥𝑟𝑖−1
′  

𝑦𝑟𝑖
′ = 휀𝑥𝑟𝑖−1

′ − 𝑥𝑟𝑖−1
′ 𝑧𝑟𝑖−1

′  

𝑧𝑟𝑖
′ = 𝑥𝑟𝑖−1

′ . 𝑦𝑟𝑖−1
′ + 𝜃𝑧𝑟𝑖−1

′  

(26) 

 

From Eq. (6), the actual system (slave) with 

the disturbances and the controller is given by 

 

𝑥𝑖
′ = 𝛾𝑦𝑖−1

′ − 𝜎𝑥𝑖−1
′ + 𝑑𝑥𝑖

′ + 𝑢𝑥𝑖
′  

𝑦𝑖
′ = 휀𝑥𝑖−1

′ − 𝑥𝑖−1
′ 𝑧𝑖−1

′ + 𝑑𝑦𝑖
′ + 𝑢𝑦𝑖

′  

𝑧𝑖
′ = 𝑥𝑖−1

′ . 𝑦𝑖−1
′ + 𝜃𝑧𝑖−1

′ + 𝑑𝑧𝑖
′ + 𝑢𝑧𝑖

′  

          

(27) 

This formulation deals with the 

synchronization strategy of two identical supply 

chains with different initial conditions. By 

setting 𝑤𝑖
′ = [𝑥𝑖

′ , 𝑦𝑖
′ , 𝑧𝑖

′]
𝑇

and 𝑤𝑟𝑖
′ =

[𝑥𝑟𝑖
′ , 𝑦𝑟𝑖

′ , 𝑧𝑟𝑖
′ ]

𝑇
, the error vector of the 

synchronized two systems is written as follows: 

𝑒𝑖
′ = 𝑤𝑖

′ − 𝑤𝑟𝑖
′  (28) 

Based on the control synthesis described 

before, the proposed control algorithm is 

designed by 

𝑢𝑖
′ = 𝑢𝑝𝑖𝑑(𝑖)

′ + 𝑢𝑠(𝑖)
′  (29) 

Similarly, the PID controller and 

supervisory controller are given by 

 

𝑢𝑝𝑖𝑑(𝑖)
′ = 𝐾𝑝(𝑖)

′ . (𝑒𝑖
′ − 𝑒𝑖−1

′ ) + 𝐾𝑖(𝑖)
′ 𝑒𝑖

′

+ 𝐾𝑑(𝑖)
′ . (𝑒𝑖

′ − 2𝑒𝑖−1
′ + 𝑒𝑖−2

′ ) 

  𝑢′𝑠(𝑖) = −𝐴′𝑤′𝑖 − 𝑓 ′(𝑤𝑖) − 𝑑′𝑖 + 𝛿′𝑖 
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Theorem 2: The synchronizing trajectories 

of the supply chain systems in Eqs. (26)-(27) 

with an unknown parameter for any initial 

conditions will be asymptotically stable by 

employing the adaptive control law described in 

Eq. (29). 

Proof: Since the proof is similar to that of 

Theorem 1, the detailed proof is omitted for 

brevity.∎ 

Likewise, by utilizing Theorem 2, the 

synchronization error signals are asymptotically 

zero, 
'

2
0ie = or 𝑤𝑖

′ → 𝑤𝑟𝑖
′  asymptotically. 

Then the master-slave synchronization scheme is 

realized by the proposed control strategy. 

NUMERICAL SIMULATIONS 

In this section, numerical simulations will 

be carried out to verify the management 

strategy's performance when applied to the 

supply chain control system. The decision-

makers want to keep the optimal stock level 

susceptible to oscillations in demand and 

inventory level as orders pass through the supply 

chain networks under uncertainty. Sometimes, 

effective short-term decision-making processes 

are essential for guaranteeing business 

sustainability through resilience. Chaotic 

phenomena contribute to short-term changes in 

demand as disruptive behavior is experienced 

within the supply chain networks. Several 

controllers can be implemented to explore their 

effects on efficiency and performance for timely 

and efficient policy making. Two chaotic 

scenarios are thoroughly discussed to guarantee 

a practical management strategy. 

Chaos suppression policy 

First, removing chaos is the key to 

managing uncertain supply chain networks as a 

risk management strategy against volatility. The 

initial control gains are selected as follows: 

(𝐾𝑝𝑥, 𝐾𝑖𝑥, 𝐾𝑑𝑥) = (1.5, 0.85, 0.5) ; 

(𝐾𝑝𝑦, 𝐾𝑖𝑦 , 𝐾𝑑𝑦) = (2, 0.2, 1.5) ; 

(𝐾𝑝𝑧, 𝐾𝑖𝑧, 𝐾𝑑𝑧) = (2.5, 0.3, 2) ; and 

(𝑥𝑟 , 𝑦𝑟, 𝑧𝑟) = (0, 0.5, 5) . For comparison 

purposes, the system performance with the 

classical PID controller is shown in Figs. 5~7, 

where the control parameters are chosen as 

follows: (𝐾𝑝𝑥 _ 𝑟 , 𝐾𝑖𝑥 _ 𝑟 , 𝐾𝑑𝑥 _ 𝑟) =

(1, 0.75, 0.5) ; (𝐾𝑝𝑦 _ 𝑟 , 𝐾𝑖𝑦 _ 𝑟 , 𝐾𝑑𝑦 _ 𝑟) =

(1.5, 0.2, 1) ; and (𝐾𝑝𝑧 _ 𝑟, 𝐾𝑖𝑧 _ 𝑟 , 𝐾𝑑𝑧 _ 𝑟) =

(2, 0.3, 0.75). The control performances on the 

time response, the tracking error, and the control 

activity are illustrated in Figs. 5, 6, and 7, 

respectively. The control action starts on the 25th 

week over 52 weeks. The simulation results 

show that the proposed adaptive control strategy 

provides superior performance and accuracy 

over classical control law. Notably, the control 

activity (or energy expenditure) required for the 

adaptive control approach is smaller than the 

control system with a classical controller. The 

activity signals are closely related to the control 

energy and time spent on decision-making. The 

strategic business policy is a standing plan that 

provides guidelines for timely and efficient 

decision-making. Based on the proposed 

approach, the policymaker can fully control the 

supply chain systems with less decision-making 

action. 

 
(a) 
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(b) 

 

 

 
(c) 

Fig. 5. Time responses of the system with control action at the 25th week: (a) product retailer ships to the customer, (b) quantity 
of products handled by the distributor, and (c) product produced by the manufacturer. 

 

 

 

 
(a) 
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(b) 

 

 

 
(c) 

Fig. 6. Tracking performances of the system with control action at the 25th week: (a) tracking error of the retailer, (b) tracking 

error of the distributor, and (c) tracking error of the manufacturer. 
 

 

 

 

 
(a) 
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(b) 

 
(c) 

Fig. 7. Control activity signals (or energy expenditure) of the control laws for suppression policy: (a) control action at the 

retailer, (b) control action at the distributor, and (c) control action at the manufacturer. 

 

Chaos synchronization policy 

The synchronization scheme requires the 

supply chain system, where information or data 

should be collected, analyzed, and utilized in 

real-time to guarantee constant visibility. For 

short-term periods, sudden changes, such as 

chaotic surges in demand, can occur 

unexpectedly in the supply chain networks. 

Then, the synchronization strategy can help 

policymakers keep informed about the 

company's internal stock level with the current 

picture at the various stages to ensure increased 

sales and profits with less control action. For this 

scenario, the controller's initial gains are chosen 

as follows: (𝐾𝑝𝑥, 𝐾𝑖𝑥, 𝐾𝑑𝑥) = (1,0.9,0.75) ; 

(𝐾𝑝𝑦, 𝐾𝑖𝑦 , 𝐾𝑑𝑦) = (1.5,0.35,1.5)  and 

(𝐾𝑝𝑧, 𝐾𝑖𝑧, 𝐾𝑑𝑧) = (2,0.15,0.5) . The classical 

PID controller's initial gains are chosen as 

follows: (𝐾𝑝𝑥 _ 𝑟 , 𝐾𝑖𝑥 _ 𝑟 , 𝐾𝑑𝑥 _ 𝑟) = (1,0.75,0.5); 

(𝐾𝑝𝑦 _ 𝑟 , 𝐾𝑖𝑦 _ 𝑟 , 𝐾𝑑𝑦 _ 𝑟) = (1.5,0.2,1)  and 

(𝐾𝑝𝑧 _ 𝑟 , 𝐾𝑖𝑧 _ 𝑟 , 𝐾𝑑𝑧 _ 𝑟) = (2,0.3,0.75) . Other 

parameters of the system have the same values of 

being used in chaos suppression: (𝛾, 𝜎, 휀, 𝜃) =
(10 ; 5 ; 1 5 ; − 0.2). The controller is activated 

at the 25th week over 52 weeks for all 

simulations. The synchronization scheme is 

intended to drive the slave system to follow the 

ideal system in the disturbance. Fig. 9 shows the 

errors between the slave system and the master 

system. As depicted in the simulation results 

(Figs. 8-10), the proposed adaptive control 

strategy provides superior performance and 

accuracy over the classical control strategy. 

Policymakers need to make decisions quickly 

and efficiently in a rapidly changing world. From 

this synchronization approach, making good and 

timely management decisions can make your 

business more successful by ensuring 

competitive advantage by growing revenue and 

increasing your customer in a volatile market 

environment. 
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(a) 

 
(b) 

 
(c) 

Fig. 8. Time responses of state variables for supply chain synchronization with control input at the 25th week: (a) product 

retailer shipping to the customer, (b) quantity of products handled by the distributor, and (c) product produced by the 

manufacturer. 
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(a) 

 
(b) 

 
(c) 

Fig. 9. Time responses of tracking errors for supply chain synchronization with control action at the 25th week: (a) tracking 

error of the retailer, (b) tracking error of the distributor, and (c) tracking error of the manufacturer. 

 
 

 

 
(a) 

http://doi.org/10.17270/J.LOG.2023.866


Roi H. V., You S., Nguyen D. A., Kim H., 2023. Adaptive decision-making strategy for supply chain systems 

under stochastic disruptions. LogForum 19 (3), 497-514, http://doi.org/10.17270/J.LOG.2023.866 

512 

 
(b) 

(c) 
Fig. 10. Control activity (or energy expenditure) of control laws for synchronization policy: (a) control action at the retailer, 

(b) control action at the distributor, and (c) control action at the manufacturer. 

 

DISCUSSION AND CONCLUSION 

This paper proposes a novel adaptive 

management strategy to regulate uncertain 

supply chain systems against market disruptions. 

First, a multiple-echelon system is built with the 

framework of nonlinear dynamics in a discrete 

event under stochastic disturbances. The chaotic 

system describes the complex relationship and 

dynamic integration between the critical supply 

chain elements for short-term processes. In 

reality, the market is always affected by 

uncertain disrupting factors, which cause 

stochastic effects on the system. The efficient 

management strategy helps policymakers 

implement a decision-support system in a more 

precise and timely way. A new PID-based 

adaptive controller has been proposed to realize 

the chaos suppression and synchronization 

strategy. The adaptive law is designed based on 

the gradient descent method so that it can readily 

update the control gains of the decision-making 

strategy. Extensive numerical simulations are 

performed to verify the proposed control 

strategy. As illustrated in the various test 

scenarios, the proposed adaptive control strategy 

provides superior performance and accuracy 

over the classical control strategy. Cuong et al. 

(2021) presented adaptive fractional-order 

sliding mode control synthesis for solving 

production-distribution problems in supply chain 

management. Xu et al. (2020) proposed adaptive 

sliding mode control for chaos suppression and 

synchronization in supply chain systems. Amir et 

al. (2020) proposed a computational method to 

find optimal PID controller gains. This article 

presents an adaptive PID algorithm for decision-

making policy, in which control gains are 

updated based on tracking errors in supply chain 

behaviors. The proposed algorithm is easy to 

understand and implement, as it employs 

simple concepts such as tracking errors and 

adaptive mechanisms to deal with chaotic 

supply systems against disruptions. Based on 

the system dynamics and control theory, this 

study contributes to analyzing, integrating, and 

controlling the digitized management systems 

with chaotic behaviors in many of today's supply 

chains. Finally, the proposed management 

solutions will help logistics providers prepare for 

the future and gain a competitive advantage, 

guaranteeing business profitability against a 

volatile market. 

  

http://doi.org/10.17270/J.LOG.2023.866


Roi H. V., You S., Nguyen D. A., Kim H., 2023. Adaptive decision-making strategy for supply chain systems 

under stochastic disruptions. LogForum 19 (3), 497-514, http://doi.org/10.17270/J.LOG.2023.866 

513 

ACKNOWLEDGMENTS 

This research was supported by Korea 

Institute of Marine Science & Technology 

Promotion (KIMST) funded by the Ministry of 

Oceans and Fisheries, Korea (20220573). 

Statements and Declarations  

The authors declare that they have no 

known competing financial interests or personal 

relationships that could have appeared to 

influence the work reported in this paper. 

Data Availability Statement  

All data generated or analyzed during this 

study are included in this article (and its 

supplementary information files). 

REFERENCES 

Amir Parnianifard, Ali Zemouche, Muhammad 

Ali Imran, L. W. (2020). Robust simulation-

optimization of dynamic-stochastic 

production/inventory control system under 

uncertainty using computational 

intelligence. Uncertain Supply Chain 

Management, 8(4), 633–648. 

https://doi.org/10.5267/j.uscm.2020.9.002 

Anne, K. R., Chedjou, J. C., & Kyamakya, K. 

(2009). Bifurcation analysis and 

synchronisation issues in a three-echelon 

supply chain. International Journal of 

Logistics Research and Applications, 12(5), 

347–362. 

https://doi.org/10.1080/1367556090318152

7 

Ardakani, E. S., Seifbarghy, M., Tikani, H., & 

Daneshgar, S. (2020). Designing a multi-

period production-distribution system 

considering social responsibility aspects and 

failure modes. Sustainable Production and 

Consumption, 22, 239–250. 

https://doi.org/https://doi.org/10.1016/j.spc.

2020.03.009 

Chang, W.-D., & Yan, J.-J. (2005). Adaptive 

robust PID controller design based on a 

sliding mode for uncertain chaotic systems. 

Chaos, Solitons & Fractals, 26(1), 167–175. 

https://doi.org/https://doi.org/10.1016/j.cha

os.2004.12.013 

Cuong, T. N., Kim, H.-S., Nguyen, D. A., & 

You, S.-S. (2021). Nonlinear analysis and 

active management of production-

distribution in nonlinear supply chain model 

using sliding mode control theory. Applied 

Mathematical Modelling, 97, 418–437. 

https://doi.org/https://doi.org/10.1016/j.apm

.2021.04.007 

Ghadimi, F., & Aouam, T. (2021). Planning 

capacity and safety stocks in a serial 

production–distribution system with 

multiple products. European Journal of 

Operational Research, 289(2), 533–552. 

https://doi.org/https://doi.org/10.1016/j.ejor.

2020.07.024 

Gholami, F., Paydar, M. M., Hajiaghaei-

Keshteli, M., & Cheraghalipour, A. (2019). 

A multi-objective robust supply chain design 

considering reliability. Journal of Industrial 

and Production Engineering, 36(6), 385–

400. 

https://doi.org/10.1080/21681015.2019.165

8136 

Govindan, K., & Cheng, T. C. E. (2018). 

Advances in stochastic programming and 

robust optimization for supply chain 

planning. Computers & Operations 

Research, 100, 262–269. 

https://doi.org/https://doi.org/10.1016/j.cor.

2018.07.027 

Ivanov, D. (2022). Viable supply chain model: 

integrating agility, resilience and 

sustainability perspectives—lessons from 

and thinking beyond the COVID-19 

pandemic. Annals of Operations Research, 

319(1), 1411–1431. 

https://doi.org/10.1007/s10479-020-03640-

6 

Kocamaz, U. E., Taşkın, H., Uyaroğlu, Y., & 

Göksu, A. (2016). Control and 

synchronization of chaotic supply chains 

using intelligent approaches. Computers & 

Industrial Engineering, 102, 476–487. 

https://doi.org/https://doi.org/10.1016/j.cie.

2016.03.014 

Kocamaz, U. E., & Uyaroğlu, Y. (2014). 

Controlling Rucklidge chaotic system with a 

single controller using linear feedback and 

passive control methods. Nonlinear 

Dynamics, 75(1), 63–72. 

https://doi.org/10.1007/s11071-013-1049-7 

http://doi.org/10.17270/J.LOG.2023.866
https://doi.org/10.5267/j.uscm.2020.9.002
https://doi.org/10.1080/13675560903181527
https://doi.org/10.1080/13675560903181527
https://doi.org/https:/doi.org/10.1016/j.spc.2020.03.009
https://doi.org/https:/doi.org/10.1016/j.spc.2020.03.009
https://doi.org/https:/doi.org/10.1016/j.chaos.2004.12.013
https://doi.org/https:/doi.org/10.1016/j.chaos.2004.12.013
https://doi.org/https:/doi.org/10.1016/j.apm.2021.04.007
https://doi.org/https:/doi.org/10.1016/j.apm.2021.04.007
https://doi.org/https:/doi.org/10.1016/j.ejor.2020.07.024
https://doi.org/https:/doi.org/10.1016/j.ejor.2020.07.024
https://doi.org/10.1080/21681015.2019.1658136
https://doi.org/10.1080/21681015.2019.1658136
https://doi.org/https:/doi.org/10.1016/j.cor.2018.07.027
https://doi.org/https:/doi.org/10.1016/j.cor.2018.07.027
https://doi.org/10.1007/s10479-020-03640-6
https://doi.org/10.1007/s10479-020-03640-6
https://doi.org/https:/doi.org/10.1016/j.cie.2016.03.014
https://doi.org/https:/doi.org/10.1016/j.cie.2016.03.014
https://doi.org/10.1007/s11071-013-1049-7


Roi H. V., You S., Nguyen D. A., Kim H., 2023. Adaptive decision-making strategy for supply chain systems 

under stochastic disruptions. LogForum 19 (3), 497-514, http://doi.org/10.17270/J.LOG.2023.866 

514 

Lei, Z., Li, Y., & Xu, Y. (2006). Chaos 

Synchronization of Bullwhip Effect in a 

Supply Chain. 2006 International 

Conference on Management Science and 

Engineering, 557–560. 

https://doi.org/10.1109/ICMSE.2006.31395

5 

Sarimveis, H., Patrinos, P., Tarantilis, C. D., & 

Kiranoudis, C. T. (2008). Dynamic 

modeling and control of supply chain 

systems: A review. Computers & Operations 

Research, 35(11), 3530–3561. 

https://doi.org/https://doi.org/10.1016/j.cor.

2007.01.017 

Tempelmeier, H. (2006). Supply chain 

inventory optimization with two customer 

classes in discrete time. European Journal of 

Operational Research, 174(1), 600–621. 

https://doi.org/https://doi.org/10.1016/j.ejor.

2005.01.044 

Tsai, C.-C., Tai, F.-C., Chang, Y.-L., & Tsai, 

C.-T. (2017). Adaptive Predictive PID 

Control Using Fuzzy Wavelet Neural 

Networks for Nonlinear Discrete-Time 

Time-Delay Systems. International Journal 

of Fuzzy Systems, 19(6), 1718–1730. 

https://doi.org/10.1007/s40815-017-0405-z 

Xu, X., Lee, S.-D., Kim, H.-S., & You, S.-S. 

(2021). Management and optimisation of 

chaotic supply chain system using adaptive 

sliding mode control algorithm. 

International Journal of Production 

Research, 59(9), 2571–2587. 

https://doi.org/10.1080/00207543.2020.173

5662 

Zhang, S., & Cui, Y. (2021). Research on 

Robust Financing Strategy of Uncertain 

Supply Chain System Based on Working 

Capital. IEEE Transactions on Fuzzy 

Systems, 29(9), 2593–2602. 

https://doi.org/10.1109/TFUZZ.2020.30039

87 

 
 

 

Ho Van Roi    ORCID ID: https://orcid.org/0000-0003-3822-5670 

Department of Logistics,  

Korea Maritime and Ocean University, Yeongdo-gu, Busan, Republic of Korea 

e-mail: roi.ho2706@g.kmou.ac.kr 
 

Sam-Sang You    ORCID ID: https://orcid.org/0000-0003-2660-4630 

Division of Mechanical Engineering,  

Korea Maritime and Ocean University, Yeongdo-gu, Busan, Republic of Korea 

Northeast-Asia Shipping and Port Logistics Research Center,  

Korea Maritime and Ocean University, Yeongdo-gu, Busan, Republic of Korea  

e-mail: ssyou@kmou.ac.kr 

 

Duy Anh Nguyen    ORCID ID: https://orcid.org/0000-0002-5280-8453 

Department of Mechatronics, Faculty of Mechanical Eng., Ho Chi Minh City University of 

Technology (HCMUT)-Vietnam National University Ho Chi Minh City, Vietnam 

e-mail: duyanhnguyen@hcmut.edu.vn 

 

Hwan-Seong Kim    ORCID ID: https://orcid.org/ 0000-0001-7035-7994 

Department of Logistics,  

Korea Maritime and Ocean University, Yeongdo-gu, Busan, Republic of Korea 

e-mail: kimhsyskmou@gmail.com 

Corresponding Author 

 

http://doi.org/10.17270/J.LOG.2023.866
https://doi.org/10.1109/ICMSE.2006.313955
https://doi.org/10.1109/ICMSE.2006.313955
https://doi.org/https:/doi.org/10.1016/j.cor.2007.01.017
https://doi.org/https:/doi.org/10.1016/j.cor.2007.01.017
https://doi.org/https:/doi.org/10.1016/j.ejor.2005.01.044
https://doi.org/https:/doi.org/10.1016/j.ejor.2005.01.044
https://doi.org/10.1007/s40815-017-0405-z
https://doi.org/10.1080/00207543.2020.1735662
https://doi.org/10.1080/00207543.2020.1735662
https://doi.org/10.1109/TFUZZ.2020.3003987
https://doi.org/10.1109/TFUZZ.2020.3003987
https://orcid.org/0000-0003-3822-5670
mailto:roi.ho2706@g.kmou.ac.kr
https://orcid.org/0000-0003-2660-4630
mailto:ssyou@kmou.ac.kr
https://orcid.org/0000-0002-5280-8453
mailto:duyanhnguyen@hcmut.edu.vn
https://orcid.org/%200000-0001-7035-7994
mailto:kimhsyskmou@gmail.com

